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Abstract
We study in detail the dynamics of a hierarchy of piecewise maps generated by
a one-parameter family of trigonometric chaotic maps and a one-parameter
family of elliptic chaotic maps of the cn and sn type. We calculate the
Lyapunov exponent and Kolmogorov–Sinai entropy of the these maps with
respect to a control parameter. Non-ergodicity of these piecewise maps is
proven analytically and investigated numerically. The invariant measure of
these maps, which are not equal to 1 or 0, appears to be characteristic for non-
ergodic behaviour. A quantity of interest is the Kolmogorov–Sinai entropy,
which, for these maps, is smaller compared with the sum of the positive
Lyapunov exponents, and it confirms the non-ergodicity of the maps.

PACS numbers: 05.45.Ra, 05.45.Jn, 05.45.Tp

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Ergodic theory is a branch of dynamic systems dealing with questions of average.
Sometimes—even for chaotic systems—ergodic theory can make long-term predictions about
the average behaviour, starting from the initial data of limited accuracy. The ergodic theory
of chaos has been studied in detail by Eckmann and Ruelle [1, 2] and others, whereas non-
ergodic mathematical models scarcely exist. It is shown that the simplest one-dimensional
dynamic systems satisfying the indecomposability assumption (and even the assumption of
topological transitivity) may be non-ergodic, which shows that restrictions of this type are not
quite reasonable in the context of general dynamical systems [3]. Furthermore, ergodicity
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has not been proven for some systems and, sometimes, we have to face the problem of
non-ergodicity of many chemical and physical systems, especially in solid systems (e.g. see
[4–7]). It is shown that candidates within solid-state systems with extremely slow dynamics
often have impurities remaining from their synthesis; hence, it may always be suspected that
non-ergodicity is due to disorder [8]. Furthermore, there are specific examples of arbitrarily
small perturbations to ergodic systems, which then behave non-ergodically [9–11]. Studies
of the origins of non-ergodicity and slow dynamics of polymer gels [12] and effects of
temperature and swelling on chain dynamics in sol–gel transition [13, 14] and also non-ergodic
transition in colloidal gelation [15] are some examples of research activity dealing with non-
ergodicity.

The aim of the present paper is twofold: to introduce the piecewise maps with their
invariant measure and to clarify their non-ergodic behaviour. We present the hierarchies of
piecewise maps generated by a one-parameter family of chaotic maps and one-parameter
families of elliptic chaotic maps of cn and sn types. In particular, we argue that these maps
satisfy the non-ergodic assumption. In our definition of a piecewise map, we assume that it
consists of components that can describe fixed-point and chaotic behaviour in accordance with
various values of the parameter of the map. The paper is organized as follows. Section 2 gives
the definitions of piecewise non-linear maps with complete boundary conditions associated
with the one-parameter families of chaotic maps (section 2.1) and one-parameter families of
elliptic chaotic maps of cn and sn types (section 2.2). In section 3, we discuss the invariant
measures of the piecewise maps and, in section 4, the Kolmogorov–Sinai (KS) entropy and
Lyapunov exponent (LE) of the piecewise maps are studied. In section 5, we review the ergodic
theory and, in section 6, we give our results on the KS entropy and LE of the piecewise maps
and we shall explain how they behave non-ergodic. In addition, there is a concluding section
and two appendices.

2. Piecewise non-linear maps

We first review the one-parameter families of trigonometric chaotic maps and one-parameter
families of elliptic chaotic maps of cn and sn types, which are used to construct the piecewise
map. The one-parameter chaotic maps [16] are defined as the ratio of polynomials of
degree N:

φ
(1)
N (x, α) = α2(1 + (−1)N 2F1(−N, N, 1

2 , x))

(α2 + 1) + (α2 − 1)(−1)N 2F1(−N, N, 1
2 , x)

= α2(TN(
√

x))2

1 + (α2 − 1)(TN(
√

x))2
(2.1)

φ
(2)
N (x, α) = α2(1 − (−1)N 2F1(−N, N, 1

2 , (1 − x)))

(α2 + 1) − (α2 − 1)(−1)N 2F1(−N, N, 1
2 , (1 − x))

= α2(UN(
√

(1 − x)))2

1 + (α2 − 1)(UN(
√

(1 − x)))2
, (2.2)

where N is an integer greater than 1. Also,

2F1(−N, N, 1
2 , x) = (−1)N cos(2N arccos

√
x) = (−1)NT2N(

√
x)
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is the hypergeometric polynomials of degree N, and TN(x) and UN(x) are Chebyshev
polynomials of types I and II, respectively. The conjugate maps of the one-parameter families
of chaotic maps, which are used to derive their invariant measure and to calculate their KS
entropy, are defined as

φ̃
(1)
N (x, α) = h ◦ φ

(1)
N (x, α) ◦ h−1 = 1

α2
tan2(N arctan

√
x), (2.3)

φ̃
(2)
N (x, α) = h ◦ φ

(2)
N (x, α) ◦ h−1 = 1

α2
cot2

(
N arctan

1√
x

)
. (2.4)

Conjugacy means that the invertible map h(x) = (1 − x)/x maps I = [0, 1] into [0, ∞). Here,
we present examples of these types, which have been considered in the present paper:

φ
(1)
2 = α2(2x − 1)2

4x(1 − x) + α2(2x − 1)2
,

φ
(2)
2 = 4α2x(1 − x)

1 + 4(α2 − 1)x(1 − x)
,

φ
(1)
3 = φ

(2)
3 = α2x(4x − 3)2

α2x(4x − 3)2 + (1 − x)(4x − 1)2
.

Now, we review a hierarchy of one-parameter families of elliptic cn and sn types, which have
been used to construct the piecewise maps with non-ergodic behaviour. These kinds of maps
are defined as the ratios of Jacobian elliptic functions of cn and sn types through the following
equation [17]:

φ
(1)
N (x, α) = α2(cn(Ncn−1(

√
x)))2

1 + (α2 − 1)(cn(Ncn−1(
√

x)))2
, (2.5)

φ
(2)
N (x, α) = α2(sn(Nsn−1(

√
x)))2

1 + (α2 − 1)(sn(Nsn−1(
√

x)))2
, (2.6)

where α is the control parameter. For N = 2, we have

φ
(1)
2 (x, α) = α2((1 − k2)(2x − 1) + k2x2)2

(1 − k2 + 2k2x − k2x2)2 + (α2 − 1)((1 − k2)(2x − 1) + k2x2)2

φ
(2)
2 (x, α) = 4α2x(1 − k2x)(1 − x)

(1 − k2x2)2 + 4x(1 − x)(α2 − 1)(1 − k2x)
.

It has been proven [17] that, for small values of the parameter K of the elliptic function, these
maps are topologically conjugate to the one-parameter families of chaotic maps.

2.1. Piecewise maps generated by one-parameter families of trigonometric chaotic maps

Now, we introduce a hierarchy of piecewise maps generated by one-parameter families of
trigonometric chaotic maps given by equations (2.1) and (2.2). To define a piecewise map
constructed from a one-parameter chaotic map, we need to take into account boundary
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Figure 1. Plot of φ
(1)
2 (x, α) for α1 = 3 and α2 = 1.

conditions; namely, we have to choose the states on the phase space. For the piecewise
map φ

(1)
N with even N, we have

φ
(1)
N (x, α) =

{
φ

(1)
N (x, α1), α1 ∈ [N, ∞),

φ
(1)
N (x, α2), α2 ∈ [0, N].

The ranges of the parameters α1 and α2 in the maps φ
(1)
N (x, α1) and φ

(1)
N (x, α2) are chosen to

guarantee, respectively, chaotic behaviour and two fixed points at x = 0 and 1. Figure 1 shows
the plot of φ

(1)
2 (x, α) for α1 = 3 and α2 = 1. In φ

(1)
N (x, α1) and φ

(1)
N (x, α2), x is limited to

x́ ∈ [0.152, 0.848] and ẍ ∈ [0, 0.352] ∪ [0.647, 1] respectively. For a given y0 = 0.5, x́ are the
roots of φ

(1)
N (x, α1) = y0 and, similarly, ẍ are the roots of φ

(1)
N (x, α2) = y0. For the piecewise

map φ
(2)
N (x, α) with even N, we have

φ
(2)
N (x, α) =

{
φ

(2)
N (x, α1), α1 ∈ [0, 1/N],

φ
(2)
N (x, α2), α2 ∈ [1/N, ∞).

The ranges of the parameters α1 and α2 in the maps φ
(2)
N (x, α1) and φ

(2)
N (x, α2) are chosen to

guarantee, respectively, two fixed points at x = 0 and 1 and chaotic behaviour. Figure 2 shows
the plot of φ

(2)
2 (x, α) for α1 = 0.25 and α2 = 0.75. In φ

(2)
N (x, α1) and φ

(2)
N (x, α2), x is limited

to x́ ∈ [0, 0.378] ∪ [0.621, 1] and ẍ ∈ [0.2, 0.8] respectively. For a given y0 = 0, x́ are the
roots of φ

(2)
N (x, α1) = y0 and, similarly, ẍ are the roots of φ

(2)
N (x, α2) = y0. For the piecewise

map φ
(1,2)
N with odd N, we have

φ
(1,2)
N (x, α) =

{
φ

(1,2)
N (x, α1), α1 ∈ [1/N, N],

φ
(1,2)
N (x, α2), α2 ∈ [0, 1/N] ∪ [N, ∞).

This map has chaotic behaviour for α2 and has a fixed point in x = 0 for α1. Figure 3 shows the
plot of φ

(1,2)
3 (x, α) for α1 = 1.5 and α2 = 0.2. In φ

(1,2)
N (x, α1) and φ

(1,2)
N (x, α2), x is limited to
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x́ ∈ [0, 0.2]∪[0.315, 1] and ẍ ∈ [0.086, 0.453]∪[0.947, 1], respectively. For a given y0 = 0.5,
x́i are the roots of φ

(2)
N (x, α1) = y0 and, similarly, ẍi are the roots of φ

(2)
N (x, α2) = y0.

2.2. One-parameter families of elliptic chaotic maps of cn and sn types

Here we first review a hierarchy of one-parameter families of elliptic cn and sn types that have
been used to construct the piecewise maps with non-ergodic behaviour. These kinds of maps
are defined as the ratio of Jacobian elliptic functions of the cn and sn type through the following
equation [17]:

φ
(1)
N (x, α) = α2(cn(Ncn−1(

√
x)))2

1 + (α2 − 1)(cn(Ncn−1(
√

x)))2
,

φ
(2)
N (x, α) = α2(sn(Nsn−1(

√
x)))2

1 + (α2 − 1)(sn(Nsn−1(
√

x)))2
,

where α is a control parameter. For N = 2, we have

φ
(1)
2 (x, α) = α2((1 − k2)(2x − 1) + k2x2)2

(1 − k2 + 2k2x − k2x2)2 + (α2 − 1)((1 − k2)(2x − 1) + k2x2)2

φ
(2)
2 (x, α) = 4α2x(1 − k2x)(1 − x)

(1 − k2x2)2 + 4x(1 − x)(α2 − 1)(1 − k2x)
.

It has been proven [17] that, for small values of the parameter K of the elliptic function, these
maps are topologically conjugate to the one-parameter family of chaotic maps. Similar to
the ones introduced in the previous section, piecewise elliptic maps can be introduced. As an
example for a piecewise elliptic map φ

(2)
2 (x, α), we have

φ
(2)
2 (x, α) =

{
φ

(2)
2 (x, α1), α1 ∈ [0, 1/N],

φ
(2)
2 (x, α2), α2 ∈ [1/N, ∞).

The range of parameters α1 and α2 in the maps φ
(2)
2 (x, α1) and φ

(2)
2 (x, α2) are chosen to

guarantee, at the same time, two fixed points at x = 0 and 1 and chaotic behaviour. Figure 4
shows a plot of the elliptic map φ

(2)
2 (x, α) for α1 = 0.5 and α2 = 2.5. In φ

(2)
2 (x, α1) and

φ
(2)
2 (x, α2), x is limited to x́ ∈ [0, 0.28] ∪ [0.72, 1] and ẍ ∈ [0.027, 0.973] respectively. Given

y0 = 0.5, x́ are the roots of φ
(2)
2 (x, α1) = y0; similarly, ẍi are the roots of φ

(2)
2 (x, α2) = y0.

3. Invariant measure

Invariant measure or SRB measure is supported on an attractor and describes the statistical of
long-time behaviour of the orbits with respect to Lebesgue measure. For invariant measure of
φ

(i)
N map (i = 1, 2) satisfying the Frobenius–Perron (FP) operator [18], we have

µ(y) =
∫ 1

0
δ(y − φ

(i)
N (x, α))µ(x) dx, (3.1)

which is equivalent to

µ(y) =
∑

x∈φ
−1(i)
N (y,α)

µ(x)
dx

dy
. (3.2)
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Figure 4. Plot of the elliptic map φ
(2)
2 (x, α) for α1 = 0.5 and α2 = 2.5.

For the chaotic part of the piecewise map, i.e. y ∈ [0, y0] for φ
(1)
2 (x, α) and y ∈ [y0, 1] for both

φ
(1,2)
3 (x, α) and φ

(2)
2 (x, α), the invariant measure µ(x, β) is defined as

1

π

√
β√

x(1 − x)(β + (1 − β)x)
, (3.3)

where β > 0 is the invariant measure of the maps φ
(i)
N (x, α) provided that we choose the

parameter α in the following form:

α =
∑[(N−1)/2]

k=0 CN
2k+1β

−k∑[N/2]
k=0 CN

2kβ
−k

(3.4)

in φ
(i)
N (x, α) maps for odd N, and

α = β
∑[N/2]

k=0 CN
2kβ

−k∑[(N−1)/2]
k=0 CN

2k+1β
−k

(3.5)

in φ
(i)
N (x, α) maps for even N, where the symbol [ ] means the greatest integer part (the proof

is presented in appendix A).
If an invariant measure is decomposed into parts that are invariant, the measure is called

non-ergodic. There may be several invariant measures for a dynamic system. If there is a
fixed point x∗, then a point distribution δ(x − x∗) in that point is an invariant measure even
if the fixed point is unstable. Therefore, for the fixed-point part of the piecewise map, i.e.
y ∈ [y0, 1] for φ

(1)
2 (x, α) and y ∈ [0, y0] for both maps φ

(1,2)
3 (x, α) and φ

(2)
2 (x, α), the average

density measure µ(x, β) has the following asymptotic form of the delta function as α tends to
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0 and 1, respectively:

µav(x, α)
α→0−→ δ(x), (3.6)

µav(x, α)
α→1−→ δ(x − 1), (3.7)

where the first one corresponds to the invariant measure associated with the fixed point at x = 0
and the latter corresponds to the fixed point at x = 1.

Since, for small values of K, the parameter of the elliptic function, the elliptic chaotic maps
of cn and sn types are topologically conjugate to the one-parameter families of trigonometric
chaotic maps, we can obtain the invariant measure of these maps for small K [23]. As K

vanishes, these maps are reduced to trigonometric chaotic maps.

4. KS entropy and Lyapunov exponents

KS entropy and Lyapunov characteristic exponents are two related ways of measuring ‘disorder’
in a dynamic system. A definition of them can be found in many textbooks [21]. To calculate
KS entropy, we use the fact that it is equal to

h(µ, φ(i)
N (x, α)) =

∫
µ(x) dx ln

∣∣∣∣ d

dx
φ

(i)
N (x, α)

∣∣∣∣ , (4.1)

which is also a statistical mechanical expression for the Lyapunov characteristic, i.e. the mean
divergence rate of two nearby orbits. As shown in appendix B, the KS entropy of φ

(i)
N (x, α) is

given by the following expression:

h(µ, φ(i)
N (x, α)) = ln


 N(1 + β + 2

√
β)N−1(∑[N/2]

k=0 CN
2kβ

k

) (∑[(N−1)/2]
k=0 CN

2k+1β
k

)

 . (4.2)

A useful numerical way to characterize chaotic phenomena in dynamic systems is by means of
the Lyapunov exponents that describe the separation rate of systems, whose initial conditions
differ by a small perturbation. Suppose that there is a small change δx(0) in the initial state
x(0). At time t, this has changed to δx(t) given by

δx(t) ≈ δx(0)

∣∣∣∣dφ′

dx
(x(0))

∣∣∣∣ = δx(0)|φ′(x(t − 1))φ′(x(t − 2)) . . . φ′(x(0))|, (4.3)

where we have used the chain rule to expand the derivative of φ. In the limit of infinitesimal
perturbations δx(0) and infinite time, we get an average exponential amplification, the
Lyapunov exponent λ,

λ = lim
t→∞

1

t
ln

∣∣∣∣ δx(t)

δx(0)

∣∣∣∣ = lim
t→∞

1

t
ln

∣∣∣∣dφ′

dx
(x(0))

∣∣∣∣ = lim
t→∞

t−1∑
k=0

ln |φ′(x(k))|. (4.4)

5. Ergodicity and non-ergodicity

A probabilistic dynamic system is characterized as ergodic or non-ergodic by its marginal
probability distributions. If the distributions have, for example, infinite variances so that a
process mean cannot be defined, then the system is non-ergodic. An ergodic system has
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‘convergent’ qualities over time, variances are finite and a non-time-dependent process mean
is clearly defined. Here, a brief description of the ergodic theory of chaos [19] is presented: let
(�, F , µ) be a probability space, � is the sample space, i.e. the space of points, ω designating
the elementary outcomes of an experiment and F is the σ-field (or σ-algebra) of events. An
event is a set A ⊂ � that is of interest. The σ-field F is the ensemble of all events, i.e. A ∈ F .
Also, µ designates a probability measure of F . A transformation T is ergodic, if it has the
probability that, for almost every ω, the orbit {ω, Tω, T 2ω, . . .} of ω is a sort of replica of � itself.
Formally, we shall say that T is ergodic if each invariant set A, i.e. a set such that T −1(A) = A,
is trivial in the sense that it has a measure of either 0 or 1. T −1(A) = A ⇒ µ(A) = 0 or
1. Therefore, studies based on invariant measure analysis can be useful for confirming the
non-ergodic behaviour of a map. In a non-ergodic system for a counter image set of A ⊂ [0,1],
we have

T −1(A) = {x ∈ [0, 1] | y = T(x), y ∈ A} (5.1)

and the map is non-ergodic if 0 < µ(A) < 1, i.e. the invariant measure that is not equal to 0
or 1 appears to be characteristic of non-ergodic behaviour. The transformation T is ergodic
(or indecomposable or metrically transitive) if, in the Birkhoff theorem, for any integrable,
real-value function f , the limit value f̂ is constant and we have µ-almost everywhere:

lim
n→∞

1

n

n−1∑
k=0

f(T kω) dµ(ω) =
∫

�

f(ω) dµ(ω). (5.2)

In this case, the average value of f(.), evaluated along the orbit T kω, converges µ-almost
everywhere to the mathematical expectation value or mean of f(.), evaluated on the space �.
In other words, for ergodic systems, the time average is equal to the space (or phase) average.
One further consideration should be added at this point. The equality of KS entropy and the
sum of all positive Lyapunov exponents, i.e.

hKS =
∑
λl>0

λl, (5.3)

indicates that, in a chaotic region, this map is ergodic as the Birkhoff ergodic theorem predicts
[20]. In other words, when the KS entropy is smaller than the sum of positive LE, the map
characterizes non-ergodic behaviour.

6. Results and discussion

In this section, we present the results of a numerical analysis for piecewise maps. Figures 5–8
show the variation of LE and KS entropy with the parameter α. A positive LE implies that two
nearby trajectories diverge exponentially (at last locally). Negative LE indicates contraction
along certain directions, and zero LE indicates that, along the relevant directions, there is
neither expansion nor contraction.

In figure 5, the LE and the corresponding KS entropy is indicated for φ
(1)
2 (x, α1) and

φ
(1)
2 (x, α2) by some points. A quantity of interest is that the KS entropy is smaller than the

sum of the positive LE for piecewise maps. Because of this relation, it is clear that this map
characterizes non-ergodic behaviour.

The invariant measure of this map is equal to 0.696, which is smaller than 1; therefore,
this map behaves non-ergodically. The above analysis is presented for φ

(2)
2 (x, α), φ

(1,2)
3 (x, α)

and the elliptic map φ
(2)
2 (x, α) (see figures 6–8). The invariant measure of these maps is equal

to 0.6, 0.314 and 0.946, respectively, confirming the non-ergodic behaviour of the piecewise
maps introduced.
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7. Conclusion

Recent attempts at introducing the hierarchy of chaotic maps with their invariant measure
[16, 17, 22–24] allow us to advance, in answering to a question, how to define non-ergodic
maps and what are the conditions for non-ergodicity in these types of systems.

In this paper, we introduce the piecewise maps with their invariant measure. Our numerical
calculations show that, for introduced piecewise maps, values of the KS entropy are smaller
compared with the sum of positive LE; therefore, these maps behave non-ergodically. Together
with the non-ergodic behaviour, we also find that the invariant measure is different from
0 or 1.

Appendix A

Similar to the calculation of the invariant measure in our previous papers [16, 17, 22–24],
we present here that for the piecewise chaotic map. To prove that the measure (3.3) satisfied
equation (3.2), we consider the conjugate map

φ̃
(1)
N (x, α) = 1

α2
tan2(N arctan

√
x) (A.1)

with the measure µ̃φ̃N
related to the measure µφN

by the following relation:

µ̃φ̃N
(x) = 1

(1 + x)2
µφN

(
1

1 + x

)
.

Denoting φ̃N(x, α) on the left-hand side of (A.1) by y and inverting it, we get

xk = tan2

(
1

N
arctan

√
yα2 + kπ

N

)
, k = 1, . . . , N. (A.2)

Then, taking the derivative of xk with respect to y, we obtain∣∣∣∣dxk

dy

∣∣∣∣ = α

N

√
xk(1 + xk)

1√
y(1 + α2y)

. (A.3)

Substituting the above result into equation (3.2), we get

µ̃φ̃N
(y)

√
y(1 + α2y) = α

N

∑
k

√
xk(1 + xk)µ̃φ̃N

(xk). (A.4)

Now, by considering the following ansatz for the invariant measure µ̃φ̃N
(y):

µ̃φ̃N
(y) =

√
β√

y(1 + βy)
, (A.5)

the above equation reduces to

1 + α2y

1 + βy
= α

N

N∑
k=1

(
1 + xk

1 + βxk

)
,

which can be written as

1 + α2y

1 + βy
= α

β
+

(
β − 1

β2

)
∂

∂β−1

(
ln

(
N∏

k=1

(β−1 + xk)

))
. (A.6)
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To evaluate the second term on the right-hand side of the above formulae, we can write the
equation in the following form:

0 = α2y cos2(N arctan
√

x) − sin2(N arctan
√

x)

= (−1)N

(1 + x)N

(
α2y

(
[N/2]∑
k=0

CN
2k(−1)Nxk

)2

− x

(
[(N−1)/2]∑

k=0

CN
2k+1(−1)Nxk

)2 )

= constant

(1 + x)N

N∏
k=1

(x − xk),

where xk are the roots of equation (A.1) and they are given by the formula (A.2). Therefore,
we have

∂

∂β−1
ln

(
N∏

k=1

(β−1 + xk)

)
= ∂

∂β−1
ln((1 − β−1)N(α2y cos2(N arctan

√
−β−1)

− sin2(N arctan
√

−β−1)) = − Nβ

β − 1
+ βN(1 + α2y)A(1/β)

(A(1/β))2β2y + (B(1/β))2
, (A.7)

whereby the polynomials A(x) and B(x) are defined by

A(x) =
[N/2]∑
k=0

CN
2kx

k, (A.8)

B(x) =
[(N−1)/2]∑

k=0

CN
2k+1x

k. (A.9)

In deriving the above formula, we have used the following identities:

cos(N arctan
√

x) = A(−x)

(1 + x)N/2
, sin(N arctan

√
x) = √

x
B(−x)

(1 + x)N/2
. (A.10)

Inserting the result (A.7) into (A.6), we get

1 + α2y

1 + βy
= 1 + α2y

B(1/β)/A(1/β) + β(αA(1/β)/B(1/β))y
. (A.11)

Hence, to get the final result, we have to choose the parameter α as

α = B(1/β)

A(1/β)
. (A.12)

Appendix B

The KS entropy of one-parameter families of chaotic map is given by equation (4.1) i.e.

h(µ, φ(x, α)) =
∫

µ(x) dx ln

∣∣∣∣ d

dx
φ(x, α)

∣∣∣∣ ,
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where

ϕ(x, α) = y = 1

α2
(tan2(N arctan

√
x)).

Therefore, to calculate h(µ, ϕ(x, α)), we have

h(µ, ϕ(x, α)) =
∫ ∞

0
µ̃(x) dx ln

(∣∣∣∣ N

α2

1√
x(1 + x)

sin N(arctan
√

x)

cos3 N(arctan
√

x)

∣∣∣∣
)

.

Using relation (A.8), we get

h(µ, ϕ(x, α)) = 1

π

∫ ∞

0

√
β dx√

x(1 + βx)
ln

(∣∣∣∣ N

α2

(1 + x)N−1B(−x)

(A(−x))3

∣∣∣∣
)

. (B.1)

We see that polynomials appearing in the numerator (denominator) of the integrand appearing
on the right-hand side of equation (B.1) have 1

2 [N − 1] ( 1
2 [N]) simple roots, denoted by xB

k ,
k = 1, . . . , 1

2 [N − 1] (xA
k , k = 1, . . . , 1

2 [N]) in the interval [0, ∞). Hence, we can write the
above formula in the following form:

h(µ, ϕ(x, α)) = 1

π

∫ ∞

0

√
β dx√

x(1 + βx)
ln

(
N

α2

(1 + x)N−1 ∏[(N−1)/2]
k=1 |x − xB

k |∏[N/2]
k=1 |x − xA

k |

)
. (B.2)

Now, making the following change of the variable
√

βx = tan θ and taking into account that
the degrees of numerator and denominator are equal for both even and odd values on N we get

h(µ, ϕ(x, α)) = 1

π

∫ ∞

0
dθ

{
ln

(
N

α2

)
+ (N − 1) ln |β + 1 + (β − 1) cos θ|

+
[(N−1)/2]∑

k=1

ln |1 − xB
k β + (1 + xB

k β) cos θ|

− 3
[N/2]∑
k=1

ln |1 − xA
k β + (1 + xA

k β) cos θ|
}

(B.3)

using the following integrals:

1

π

∫ π

0
ln |a + b cos θ| =




ln

∣∣∣∣∣a + √
a2 − b2

2

∣∣∣∣∣ , |a| > |b|,

ln

∣∣∣∣b2
∣∣∣∣ , |a| � |b|.

(B.4)
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